Term | Definition | Formula | Domain | Range | |||||
---|---|---|---|---|---|---|---|---|---|
Sine | In a right triangle, the ratio of the length of the side opposite the angle to the length of the hypotenuse. | \( \sin(\theta) = \frac{{\text{Opposite}}}{{\text{Hypotenuse}}} \) | \( (-\infty, \infty)\) | \([-1, 1]\) | |||||
Cosine | In a right triangle, the ratio of the length of the adjacent side to the length of the hypotenuse | \( \cos(\theta) = \frac{{\text{Adjacent}}}{{\text{Hypotenuse}}} \) | \( (-\infty, \infty)\) | \([-1, 1]\) | |||||
Tangent | In a right triangle, the ratio of the length of the side opposite the angle to the length of the adjacent side. | \( \tan(\theta) = \frac{{\text{Opposite}}}{{\text{Adjacent}}} \) | \(\frac{\pi}{2} + \pi n \text{, } n \text{ is an integer}\) | \( (-\infty, \infty)\) | |||||
Secant | The reciprocal of the cosine of an angle. | \( \sec(\theta) = \frac{1}{{\cos(\theta)}} \) | \(\frac{\pi}{2} + \pi n \text{, } n \text{ is an integer}\) | \([-1, 1]\) | |||||
Cotangent | The reciprocal of the tangent of an angle. | \( \cot(\theta) = \frac{1}{{\tan(\theta)}} \) | \(\pi n \text{, } n \text{ is an integer} \) | \( (-\infty, \infty)\) | |||||
Cosecant | The reciprocal of the sine of an angle. | \( \csc(\theta) = \frac{1}{{\sin(\theta)}} \) | \(\pi n \text{, } n \text{ is an integer}\) | \([-1, 1]\) | |||||
Radian | A unit of angular measure defined as the angle subtended by an arc of a circle that has the same length as the radius of the circle. One radian is equal to approximately 57.29 degrees. | \(\pi \) |
Term | Definition | Domain | Range | ||||
---|---|---|---|---|---|---|---|
\(\arcsin(x)\) \(\sin^{-1}(x) \) | The inverse of the sine function; it returns the value \(y\) of the sine of \(x\). | \([-1,1]\) | \([-\frac{\pi}{2}, \frac{\pi}{2}]\) | ||||
\(\arccos(x)\) \(\cos^{-1}(x)\) | The inverse of the cos function; it returns the value \(y\) of the cos of \(x\). | \([-1,1]\) | \([0, \pi]\) | ||||
\(\arctan(x)\) \(\tan^{-1}(x)\) | The inverse of the tangent function; it returns the value \(y\) of the tan of \(x\). | \( (-\infty, \infty)\) | \([-\frac{\pi}{2}, \frac{\pi}{2}]\) | ||||
\(\sec^{-1}(x)\) | The inverse of the sec function; it returns the value \(y\) of the sec of \(x\). | \((-\infty, -1)\cup(1, \infty)\) | \([0, \pi], y \neq \frac{\pi}{2} \) | ||||
\(\csc^{-1}(x)\) | The inverse of the csc function; it returns the value \(y\) of the csc of \(x\). | \((-\infty, -1]\cup[1, \infty)\) | \([-\frac{\pi}{2}, \frac{\pi}{2}], y \neq 0\) | ||||
\(\cot^{-1}(x)\) | The inverse of the cot function; it returns the value \(y\) of the cot of \(x\). | \( (-\infty, \infty)\) | \([0, \pi]\) |
Function | 0° | 30° | 45° | 60° | 90° | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
sin | \(0\) | \(\frac{1}{2} \) | \(\frac{1}{\sqrt{2}}\) | \(\frac{\sqrt{3}}{2}\) | \(1\) | ||||||
cos | \(1\) | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{\sqrt{2}}\) | \(\frac{1}{2} \) | \(0\) | ||||||
tan | \(0\) | \(\frac{\sqrt{3}}{3}\) | \(1\) | \(\sqrt{3}\) | Not defined | ||||||
cot | Not defined | \(\sqrt{3}\) | \(1\) | \(\frac{\sqrt{3}}{3}\) | \(0\) | ||||||
csc | Not defined | \(2\) | \(\sqrt{2}\) | \(\frac{2\sqrt{3}}{3}\) | \(1\) | ||||||
sec | \(1\) | \(\frac{2\sqrt{3}}{3}\) | \(\sqrt{2}\) | \(2\) | Not defined |
Term | Definition | ||
---|---|---|---|
Pythagorean Identities |
| ||
Sum and Difference Identities |
| ||
Double Angle Identities |
| ||
Half Angle Identities |
| ||
Product to Sum Identities |
| ||
Sum to Product Identities |
| ||
Law of Sines | \(\frac{{a}}{{\sin A}} = \frac{{b}}{{\sin B}} = \frac{{c}}{{\sin C}}\) | ||
Law of Cosines |
|
Term | Definition | ||
---|---|---|---|
Amplitude | One half of the difference between a graph's highest value and lowest value. | ||
Period | The interval it takes for a graph to complete one cycle. | ||
Cycle | One complete movement between a starting point, a graph's highest point, its lowest point, and finally, its starting point again. | ||
Frequency | The amount of cycles that happen in one second. | ||
Horizontal Shift Phase Shift | The graph's offset on the horizontal axis. |
AI Study Tools for STEM Students Worldwide.
© 2025 CompSciLib™, LLC. All rights reserved.
info@compscilib.comContact Us